Thyristor là gì? Ký hiệu và nguyên lý hoạt động của thyristor
1. Thyristor là gì?
2. Ký hiệu và phân loại Thyristor
3. Đặc tuyến Volt – Ampere của Thyristor
4. Những thông số quan trọng khi sử dụng Thyristor
5. Cách đo và kiểm tra Thyristor
6. Ứng dụng của Thyristor
1. Thyristor là gì?
Thyristor hay còn gọi với cái tên đầy đủ là Silicon Controlled Rectifier (Chỉnh lưu silic có điều khiển) là phần tử bán dẫn cấu tạo từ bốn lớp bán dẫn là một loại linh kiện được sử dụng rộng rãi trong các thiết bị điện tử.
Thyristor bản chất là một điốt được ghép từ bởi 2 transistor có với hai chiều đối nghịch và có thể điều khiển được (tương đương hai BJT gồm một BJT loại NPN và một BJT loại PNP). Chúng hoạt động khi được cấp điện và tự động ngắt, trở về trạng thái ngưng dẫn khi không có điện. Nó được thường được dùng cho chỉnh lưu dòng điện có điều khiển.
2. Ký hiệu và phân loại Thyristor
Ký hiệu
Thyristor có cấu tạo gồm có 3 cực như sau : Anode (A), cathode (K), cực điều khiển (G), Thyristor đóng vai trò như một khóa điện tử có điều khiển bằng điện. Đặc tính của Thyristor chỉ cho phép dẫn điện từ Anode (A) sang Cathode (K) khi cho một dòng điện kích thích vào chân G.
Thyristor được cấu tạo gồm 4 lớp bán dẫn nối xen kẽ và được nối ra 3 chân như sau :
A : anode — cực dương
K : Cathode — cực âm
G : Gate — cực điều khiển (cực cổng)
Về mặt kí hiệu thì Thyristor sẽ khá giống với một con diode. Một diode thông thường sẽ cho phép dòng điện đi qua từ A sang tới K khi điện thế tại A lớn hơn điện thế tại K. Còn đối với một Thyristor thì vẫn phải đảm bảo điều kiện đó. Ngoài ra chúng còn cần thêm một điều kiện nữa là phải kích thích một dòng điều khiển đi vào chân G.
Có hai loại Thyristor, chúng được ký hiệu như hình vẽ dưới đây. Trong thực tế, chúng ta chỉ gặp phần lớn Thyristor loại P (chiếm khoảng 80%).
Ký hiệu
Thyristor có cấu tạo gồm có 3 cực như sau : Anode (A), cathode (K), cực điều khiển (G), Thyristor đóng vai trò như một khóa điện tử có điều khiển bằng điện. Đặc tính của Thyristor chỉ cho phép dẫn điện từ Anode (A) sang Cathode (K) khi cho một dòng điện kích thích vào chân G.
Thyristor được cấu tạo gồm 4 lớp bán dẫn nối xen kẽ và được nối ra 3 chân như sau :
A : anode — cực dương
K : Cathode — cực âm
G : Gate — cực điều khiển (cực cổng)
Về mặt kí hiệu thì Thyristor sẽ khá giống với một con diode. Một diode thông thường sẽ cho phép dòng điện đi qua từ A sang tới K khi điện thế tại A lớn hơn điện thế tại K. Còn đối với một Thyristor thì vẫn phải đảm bảo điều kiện đó. Ngoài ra chúng còn cần thêm một điều kiện nữa là phải kích thích một dòng điều khiển đi vào chân G.
Có hai loại Thyristor, chúng được ký hiệu như hình vẽ dưới đây. Trong thực tế, chúng ta chỉ gặp phần lớn Thyristor loại P (chiếm khoảng 80%).
Phân loại
Dựa trên khả năng bật và tắt, Thyristor được phân thành các loại sau:
• Thyristor điều khiển silic hoặc SCR
• Thyristor cổng tắt hoặc GTO
• Thyristor cực phát tắt hoặc ETOs
• Thyristor dẫn điện ngược hoặc RCT
• Thyristor Triode hai chiều hoặc TRIAC
• Thyristor MOS tắt hoặc MTO
• Thyristor điều khiển pha hai chiều hoặc BCT
• Thyristor chuyển đổi nhanh hoặc SCR
• Bộ điều chỉnh silicon được kích hoạt bằng ánh sáng hoặc LASCR
• Thyristor kiểm soát FET hoặc FET-CTHs
• Thyristor tích hợp cổng hoặc IGCT
Một vài hình ảnh các loại Thyristor hiện nay:
Dạng Module
Dựa trên khả năng bật và tắt, Thyristor được phân thành các loại sau:
• Thyristor điều khiển silic hoặc SCR
• Thyristor cổng tắt hoặc GTO
• Thyristor cực phát tắt hoặc ETOs
• Thyristor dẫn điện ngược hoặc RCT
• Thyristor Triode hai chiều hoặc TRIAC
• Thyristor MOS tắt hoặc MTO
• Thyristor điều khiển pha hai chiều hoặc BCT
• Thyristor chuyển đổi nhanh hoặc SCR
• Bộ điều chỉnh silicon được kích hoạt bằng ánh sáng hoặc LASCR
• Thyristor kiểm soát FET hoặc FET-CTHs
• Thyristor tích hợp cổng hoặc IGCT
Một vài hình ảnh các loại Thyristor hiện nay:
Dạng Module
Dạng bắt ốc (Stud)
Dạng Đĩa (Capsule)
3. Đặc tuyến Volt – Ampere của Thyristor
Ảnh biểu diễn lớp của Thyristor.
Ảnh biểu diễn lớp của Thyristor.
Thyristor là phần tử bán dẫn cấu tạo từ bốn lớp bán dẫn p-n-p-n, tạo ra ba tiếp giáp p-n J1, J2, J3. Thyristor có ba cực : anôt A, catôt K, cực điều khiển G. Đặc tính vôn-ămpe của một Thyristor gồm hai phần.
Phần thứ nhất nằm trong góc phần thứ tư thứ I là đặc tính thuận tương ứng với trường hợp điện áp UAK>0, phần thứ hai nằm trong góc phần tư thứ III, gọi là đặc tính ngược, tương ứng với trường hợp UAK<0
Trường hợp dòng điện vào cực điều khiển bằng không (IG = 0).
Khi dòng vào cực điều khiển của Thyristor bằng 0 hay khi hở mạch cực điều khiển Thyristor sẽ cản trở dòng điện ứng với cả hai trường hợp phân cực điện áp giữa anôt-catôt. Khi điện áp UAK < 0 theo cấu tạo bán dẫn của Thyristor hai tiếp giáp J1, J3 đều phân cực ngược, lớp J2 phân cực thuận, như vậy Thyristor sẽ giống như hai điôt mắc nối tiếp bị phân cực ngược.
Qua Thyristor sẽ chỉ có một dòng điện rất nhỏ chạy qua, gọi là dòng rò. Khi UAK tăng đạt đến một giá trị điện áp lớn nhất Ung,max sẽ xảy ra hiện tượng Thyristor bị đánh thủng, dòng điện có thể tăng lên rất lớn. Giống như ở đoạn đặc tính ngược của điôt quá trình bị đánh thủng là quá trình không thể đảo ngược được, nghĩa là nếu có giảm điện áp UAK xuống dưới mức Ung,max thì dòng điện cũng không giảm được về mức dòng rò. Thyristor đã bị hỏng.
Khi tăng điện áp anôt-catôt theo chiều thuận, UAK > 0, lúc đầu cũng chỉ có một dòng điện rất nhỏ chạy qua, gọi là dòng rò. Điện trở tương đương mạch anôt-catôt vẫn có giá trị rất lớn. Khi đó tiếp giáp J1, J3 phân cực thuận, J2 phân cực ngược.
Cho đến khi UAK tăng đạt đến giá trị điện áp thuận lớn nhất, Uth,max, sẽ xảy ra hiện tượng điện trở tương đương mạch anôt-catôt đột ngột giảm, dòng điện chạy qua Thyristor sẽ chỉ bị giới hạn bởi điện trở mạch ngoài. Nếu khi đó dòng qua Thyristor có giá trị lớn hơn một mức dòng tối thiểu, gọi là dòng duy trì Idt, thì khi đó Thyristor sẽ dẫn dòng trên đường đặc tính thuận, giống như đường đặc tính thuận ở điôt.
Đoạn đặc tính thuận được đặc trưng bởi tính chất dòng có thể có giá trị lớn nhưng điện áp rơi trên anôt-catôt thì nhỏ và hầu như không phụ thuộc vào giá trị của dòng điện.
Trường hợp có dòng điện vào cực điều khiển (IG > 0).
Nếu có dòng điều khiển đưa vào giữa cực điều khiển và catôt quá trình chuyển điểm làm việc trên đường đặc tính thuận sẽ xảy ra sớm hơn, trước khi điện áp thuận đạt đến giá trị lớn nhất, Uth.max. Điều này được mô tả trên hình bằng những đường nét đứt, ứng với các giá trị dòng điều khiển khác nhau, IG1, IG2, IG3,… Nói chung nếu dòng điều khiển lớn hơn thì điểm chuyển đặc tính làm việc sẽ xảy ra với UAK nhỏ hơn.
Tình hình xảy ra trên đường đặc tính ngược sẽ không có gì khác so với trường hợp dòng điều khiển bằng 0.
Thyristor có đặc tính giống như điôt, nghĩa là chỉ cho phép dòng chạy qua theo một chiều, từ anôt đến catôt và cản trở dòng chạy theo chiều ngược lại. Tuy nhiên khác với điôt, để Thyristor có thể dẫn dòng ngoài điều kiện phải có điện áp UAK > 0 còn cần thêm một số điều kiện khác. Do đó, Thyristor được coi là phần tử bán dẫn có điều khiển để phân biệt với điôt là phần tử không điều khiển được.
Trường hợp dòng điện vào cực điều khiển bằng không (IG = 0).
Khi dòng vào cực điều khiển của Thyristor bằng 0 hay khi hở mạch cực điều khiển Thyristor sẽ cản trở dòng điện ứng với cả hai trường hợp phân cực điện áp giữa anôt-catôt. Khi điện áp UAK < 0 theo cấu tạo bán dẫn của Thyristor hai tiếp giáp J1, J3 đều phân cực ngược, lớp J2 phân cực thuận, như vậy Thyristor sẽ giống như hai điôt mắc nối tiếp bị phân cực ngược.
Qua Thyristor sẽ chỉ có một dòng điện rất nhỏ chạy qua, gọi là dòng rò. Khi UAK tăng đạt đến một giá trị điện áp lớn nhất Ung,max sẽ xảy ra hiện tượng Thyristor bị đánh thủng, dòng điện có thể tăng lên rất lớn. Giống như ở đoạn đặc tính ngược của điôt quá trình bị đánh thủng là quá trình không thể đảo ngược được, nghĩa là nếu có giảm điện áp UAK xuống dưới mức Ung,max thì dòng điện cũng không giảm được về mức dòng rò. Thyristor đã bị hỏng.
Khi tăng điện áp anôt-catôt theo chiều thuận, UAK > 0, lúc đầu cũng chỉ có một dòng điện rất nhỏ chạy qua, gọi là dòng rò. Điện trở tương đương mạch anôt-catôt vẫn có giá trị rất lớn. Khi đó tiếp giáp J1, J3 phân cực thuận, J2 phân cực ngược.
Cho đến khi UAK tăng đạt đến giá trị điện áp thuận lớn nhất, Uth,max, sẽ xảy ra hiện tượng điện trở tương đương mạch anôt-catôt đột ngột giảm, dòng điện chạy qua Thyristor sẽ chỉ bị giới hạn bởi điện trở mạch ngoài. Nếu khi đó dòng qua Thyristor có giá trị lớn hơn một mức dòng tối thiểu, gọi là dòng duy trì Idt, thì khi đó Thyristor sẽ dẫn dòng trên đường đặc tính thuận, giống như đường đặc tính thuận ở điôt.
Đoạn đặc tính thuận được đặc trưng bởi tính chất dòng có thể có giá trị lớn nhưng điện áp rơi trên anôt-catôt thì nhỏ và hầu như không phụ thuộc vào giá trị của dòng điện.
Trường hợp có dòng điện vào cực điều khiển (IG > 0).
Nếu có dòng điều khiển đưa vào giữa cực điều khiển và catôt quá trình chuyển điểm làm việc trên đường đặc tính thuận sẽ xảy ra sớm hơn, trước khi điện áp thuận đạt đến giá trị lớn nhất, Uth.max. Điều này được mô tả trên hình bằng những đường nét đứt, ứng với các giá trị dòng điều khiển khác nhau, IG1, IG2, IG3,… Nói chung nếu dòng điều khiển lớn hơn thì điểm chuyển đặc tính làm việc sẽ xảy ra với UAK nhỏ hơn.
Tình hình xảy ra trên đường đặc tính ngược sẽ không có gì khác so với trường hợp dòng điều khiển bằng 0.
Thyristor có đặc tính giống như điôt, nghĩa là chỉ cho phép dòng chạy qua theo một chiều, từ anôt đến catôt và cản trở dòng chạy theo chiều ngược lại. Tuy nhiên khác với điôt, để Thyristor có thể dẫn dòng ngoài điều kiện phải có điện áp UAK > 0 còn cần thêm một số điều kiện khác. Do đó, Thyristor được coi là phần tử bán dẫn có điều khiển để phân biệt với điôt là phần tử không điều khiển được.
4. Những thông số quan trọng khi sử dụng Thyristor
Giá trị dòng trung bình cho phép chạy qua Thyristor (Iv, tb)
Giá trị dòng trung bình cho phép chạy qua Thyristor là giá trị trung bình được phép chạy qua Thyristor trong điều kiện nhiệt độ của cấu trúc tinh thể bán dẫn không vượt quá một giá trị nhiệt độ cho phép. Trên thực tế, giá trị dòng điện cho phép chạy qua Thyristor không cố định mà nó phụ thuộc vào điều kiện làm mát và môi trường. Nhìn chung, ta có thể làm mát dòng điện bằng một trong ba cách sau:
– Làm mát tự nhiên: Dòng sử dụng cho phép bằng một phần ba dòng cho phép Iv, tb.
– Làm mát cưỡng bức bằng nước: Dòng sử dụng cho phép bằng 100% dòng cho phép Iv, tb.
– Làm mát cưỡng bức bằng quạt gió: Dòng sử dụng cho phép bằng hai phần ba dòng cho phép Iv, tb.
Điện áp ngược cho phép lớn nhất (Ung, max)
Đây là mức điện áp ngược lớn nhất được sử dụng trên Thyristor nếu không muốn Thyristor bị hỏng. Chính vì vậy, chúng ta phải luôn đảm bảo rằng điện áp giữa Anode và Cathode luôn nhỏ hơn hoặc bằng mức điện áp ngược cho phép lớn nhất. Ngoài ra, chúng ta cũng cần đảm bảo độ dự trữ nhất định về điện áp (Ung, max phải ít nhất là bằng 1,2 – 1,5 lần biên độ lớn nhất của điện áp trên sơ đồ).
Thời gian phục hồi tính chất khóa của Thyristor τ (μs)
Thời gian phục hồi tính chất khóa của Thyristor là thời gian tối thiểu phải đặt điện áp âm lên giữa anode và cathode của Thyristor sau khi dòng anode-cathode đã về bằng không trước khi lại có thể có điện áp Uak dương mà Thyristor vẫn khóa. Thông thường, ta phải đảm bảo thời gian dành cho quá trình khóa phải bằng 1,5-2 lần τ.
Tốc độ tăng điện áp cho phép dU/dt (V/μs)
Bởi vì Thyristor là một linh kiện bán dẫn có điều khiển nên cho dù khi Thyristor được phân cực thuận mà không có tín hiệu điều khiển thì nó cũng không cho phép dòng chạy qua. Tốc độ tăng điện áp là một thông số để phân biệt giữa Thyristor tần số thấp với Thyristor tần số cao. Ở Thyristor tần số thấp, dU/dt vào khoảng 50 đến 200 V/μs còn với các Thyristor tần số cao dU/dt có thể lên tới 500-2000 V/μs.
Giá trị dòng trung bình cho phép chạy qua Thyristor (Iv, tb)
Giá trị dòng trung bình cho phép chạy qua Thyristor là giá trị trung bình được phép chạy qua Thyristor trong điều kiện nhiệt độ của cấu trúc tinh thể bán dẫn không vượt quá một giá trị nhiệt độ cho phép. Trên thực tế, giá trị dòng điện cho phép chạy qua Thyristor không cố định mà nó phụ thuộc vào điều kiện làm mát và môi trường. Nhìn chung, ta có thể làm mát dòng điện bằng một trong ba cách sau:
– Làm mát tự nhiên: Dòng sử dụng cho phép bằng một phần ba dòng cho phép Iv, tb.
– Làm mát cưỡng bức bằng nước: Dòng sử dụng cho phép bằng 100% dòng cho phép Iv, tb.
– Làm mát cưỡng bức bằng quạt gió: Dòng sử dụng cho phép bằng hai phần ba dòng cho phép Iv, tb.
Điện áp ngược cho phép lớn nhất (Ung, max)
Đây là mức điện áp ngược lớn nhất được sử dụng trên Thyristor nếu không muốn Thyristor bị hỏng. Chính vì vậy, chúng ta phải luôn đảm bảo rằng điện áp giữa Anode và Cathode luôn nhỏ hơn hoặc bằng mức điện áp ngược cho phép lớn nhất. Ngoài ra, chúng ta cũng cần đảm bảo độ dự trữ nhất định về điện áp (Ung, max phải ít nhất là bằng 1,2 – 1,5 lần biên độ lớn nhất của điện áp trên sơ đồ).
Thời gian phục hồi tính chất khóa của Thyristor τ (μs)
Thời gian phục hồi tính chất khóa của Thyristor là thời gian tối thiểu phải đặt điện áp âm lên giữa anode và cathode của Thyristor sau khi dòng anode-cathode đã về bằng không trước khi lại có thể có điện áp Uak dương mà Thyristor vẫn khóa. Thông thường, ta phải đảm bảo thời gian dành cho quá trình khóa phải bằng 1,5-2 lần τ.
Tốc độ tăng điện áp cho phép dU/dt (V/μs)
Bởi vì Thyristor là một linh kiện bán dẫn có điều khiển nên cho dù khi Thyristor được phân cực thuận mà không có tín hiệu điều khiển thì nó cũng không cho phép dòng chạy qua. Tốc độ tăng điện áp là một thông số để phân biệt giữa Thyristor tần số thấp với Thyristor tần số cao. Ở Thyristor tần số thấp, dU/dt vào khoảng 50 đến 200 V/μs còn với các Thyristor tần số cao dU/dt có thể lên tới 500-2000 V/μs.
5. Cách đo và kiểm tra Thyristor
Khi có Thyristor ta phải xác định chính xác 3 chân của nó : A-K và G
Ta dùng đồng hồ VOM chỉnh sang thang đo Ohm (Ω) x1, đặt que đen vào Anot, que đỏ vào Katot ban đầu kim không lên , dùng Tovit chập chân A vào chân G => thấy đồng hồ lên kim, sau đó bỏ Tovit ra => đồng hồ vẫn lên kim => như vậy là Thyristor tốt. Ngược lại thì Thyristor bị hỏng.
Khi có Thyristor ta phải xác định chính xác 3 chân của nó : A-K và G
Ta dùng đồng hồ VOM chỉnh sang thang đo Ohm (Ω) x1, đặt que đen vào Anot, que đỏ vào Katot ban đầu kim không lên , dùng Tovit chập chân A vào chân G => thấy đồng hồ lên kim, sau đó bỏ Tovit ra => đồng hồ vẫn lên kim => như vậy là Thyristor tốt. Ngược lại thì Thyristor bị hỏng.
Để có thể đảm bảo riêng Thyristor còn hoạt động hay đã chết thì đòi hỏi chúng ta phải kiểm tra. Việc này có thể không cần thiết đối với các loại Thyristor mới mua. Nhưng với các loại đã mua dữ trữ lâu dài thì việc kiểm tra là điều nên làm. Tránh các trường hợp khi chúng ta đã hàn vào mạch rồi nhưng khí đó mới biết răng Thyristor đã hỏng thì rất khó xử lý thay mới. Lúc này sẽ làm kém thẩm mỹ board mạch cũng như phần nào đó làm ảnh hưởng đến các linh kiện và đường điện chạy trong board.
Ưu điểm
- Có khả năng xử lý điện áp, dòng điện và công suất lớn.
- Cầu chì có thể bảo vệ được Thyristor.
- Dễ dàng khi bật.
- Cấu tạo của mạch kích hoạt bộ chỉnh lưu sử dụng Thyristor rất đơn giản.
- Kiểm soát rất dễ dàng.
- Không mất nhiều chi phí.
- Có khả năng điều khiển nguồn xoay chiều.
Nhược điểm
- Thyristor chỉ điều khiển nguồn một chiều vì nó chỉ có thể điều khiển công suất bằng nguồn một chiều trong nửa chu kỳ dương của nguồn xoay chiều.
- Mỗi chu kỳ, Thyristor đều phải được bật lên trong mạch xoay chiều.
- Không thể sử dụng ở tần số cao.
- Dòng điện ở cổng (gate) không thể âm.
- Có khả năng xử lý điện áp, dòng điện và công suất lớn.
- Cầu chì có thể bảo vệ được Thyristor.
- Dễ dàng khi bật.
- Cấu tạo của mạch kích hoạt bộ chỉnh lưu sử dụng Thyristor rất đơn giản.
- Kiểm soát rất dễ dàng.
- Không mất nhiều chi phí.
- Có khả năng điều khiển nguồn xoay chiều.
Nhược điểm
- Thyristor chỉ điều khiển nguồn một chiều vì nó chỉ có thể điều khiển công suất bằng nguồn một chiều trong nửa chu kỳ dương của nguồn xoay chiều.
- Mỗi chu kỳ, Thyristor đều phải được bật lên trong mạch xoay chiều.
- Không thể sử dụng ở tần số cao.
- Dòng điện ở cổng (gate) không thể âm.
6. Ứng dụng của Thyristor
Ứng dụng Thyristor trong các mạch Dimmer
Ứng dụng Thyristor trong các mạch Dimmer
Với tính chất của mình, Thyristor thường dược dùng trong các bộ Dimmer để điều chỉnh độ sáng và tốc độ động cơ AC.
Ứng dụng Thyristor trong các mạch bảo vệ quá dòng, quá áp.
Do Thyristor có đặc điểm chỉ cần tín hiệu kích rất nhỏ vào chân G cũng có thể điều khiển được. Vậy nên chúng rất hay được sử dụng trong các mạch báo động, mạch bảo vệ quá dòng hoặc quá áp.
Ứng dụng Thyristor trong các mạch bảo vệ quá dòng, quá áp.
Do Thyristor có đặc điểm chỉ cần tín hiệu kích rất nhỏ vào chân G cũng có thể điều khiển được. Vậy nên chúng rất hay được sử dụng trong các mạch báo động, mạch bảo vệ quá dòng hoặc quá áp.
Video: